apaciz ki OST11 X

Apache Phoenix

Transforming HBase into a Relational Database

@ApachePhoenix
http://phoenix.apache.org/

Agenda

What is Apache Phoenix (and Apache HBase)?
A Deeper Look

— Views and Multi-Tenancy
— Secondary Indexes

— Joins

— Query Optimizations
Roadmap

Q&A

APACHE

oenix

What is Apache Phoenix (and Apache HBase)?

Hsloenix

APACHE

What is Apache Phoenix?

* Arelational database layer for Apache HBase

— Query engine
* Transforms SQL queries into native HBase API calls

* Pushes as much work as possible onto the cluster for parallel
execution

— Metadata repository

* Typed access to data stored in HBase tables

— A JDBC driver
* A new Apache Software Foundation project

— Originally developed at Salesforce
— Now a top-level project at the ASF
— A growing community with momentum

APACHE O€nlxXx

Where Does Phoenix Fit In?

Phoenix Pig Hive GraphX MLLib

JDBC client Data Manipulation Structured Query il el B Data mining
framework

Phoenix
Query execution engine YARN (MRVZ) Spark

Cluster Resource
Manager /

RDB Data Collector

Iterative In-Memory

HBase MapReduce Computation

Distributed Database

Zookeeper
Coordination

HDFS 2.0

Hadoop Distributed File System

Log Data Collector

Hadoop

The Java Virtual Machine c
ommon JNI

avachs ks O€N1X

& SQL back in Nc

What is Apache HBase?

* A high performance horizontally scalable datastore
engine for Big Data, suitable as the store of record
for mission critical data

APACHE

What is Apache HBase?

* An emerging platform for scale out relational

datastores
APACHE P Oenix
S P lice Trafodion
MACHINE

IFeloenix

HBRSE APACHE

The HBase Data Model

* Tablespaces

_Jable

Column#1 Column#n

keyl:vall,tl / keyl:vall,tl
keyl:wval2,t2 | keyl.val2t2

key2:vall,t2 |/ key2:vall,t
key2:val2, t4 key2:val2, t
sorted

keyn:vain, tn lv,x"‘keyn:valn, t

Row #1

l : ~ row-Key
Row #n
sorte / /

* Not like a spreadsheet, a “sparse, consistent,
distributed, multi-dimensional, sorted map”

colB ->
rowA -> colA -> value value?
rowB -> foo -> long value
rowC -> url -> huge value |
S —

APACHE

IFeloenix

How HBase Achieves Scalability

1 A 2
TabIeA a) ﬂ \\\ \\\ ‘\\
= \ ﬁ o hY A})
g :) N OO
— B) A
] T g ¢ e
.) OO
Splits \ v Regions
TabIeB a) ﬂ %\%\Q‘\L‘;\ &
= \ ﬁ 2 \\ \\ \\
g ~) N OO
— 1 hY A
] T g ¢ e
.) OO
Assignments

©900

RegionServers

APACHE P oenix

How is HBase Different from a RDBMS?

Data layout Row oriented
Transactions Multi-row ACID
Query language sQL

Joins Yes

On arbitrary columns

Max data size Terabytes

SRR e] gl el f 8 [T39 1145 1000s of operations per second

* - No architectural upper bound on data size or aggregate throughput

RDBMS

Column oriented

Single row or adjacent row
groups only

None (API access)

No

Single row index only

Petabytes*

Millions of operations per
second®

e

loenix

SQL: In and Out Of Fashion

 1969: CODASYL (network database)

* 1979: First commercial SQL RDBMs

e 1990: Transaction processing on SQL now popular
e 1993: Multidimensional databases

 1996: Enterprise Data Warehouses

e 2006: Hadoop and other “big data” technologies

e 2008: NoSQL

e 2011:SQL on Hadoop

e 2014: Interactive analytics on Hadoop and NoSQL with
SQL

Why?

From “SQL On Everything, In Memory” by Julian Hyde, Strata NYC 2014 APACHE

oenix

SQL: In and Out Of Fashion

* Implementing structured queries well is hard
— Systems cannot just “run the query” as written
— Relational systems require the algebraic operators, a query
planner, an optimizer, metadata, statistics, etc.
e ... but the result is very useful to non-technical users

— Dumb queries (e.g. tool generated) can still get high
performance

— Adding new algorithms (e.g. a better join) or
reorganizations of physical data layouts or migrations from
one data store to another are transparent

e The challenge today is blending the scale and
performance of NoSQL with the ease of use of SQL

Inspired by “SQL On Everything, In Memory” by Julian Hyde, Strata NYC 2014 APACHE oenix

Phoenix Puts the SQL Back in NoSQL

A complete relational system

Reintroduces the familiar declarative SQL interface
to data (DDL, DML, etc.) with additional benefits

— Read only views on existing HBase data
— Dynamic columns extend schema at runtime

— Schema is versioned — for free by HBase — allowing
flashback queries using prior versions of metadata

Reintroduces typed data and query optimizations
possible with it

Secondary indexes, query optimization, statistics, ...

Integrates the scalable HBase data storage platform
as just another JDBC data source

APACHE O€nlxXx

Phoenix Puts the SQL Back in NoSQL

-
* - PHOENIX-400 Transaction support |=

loenix

https://issues.apache.org/jira/browse/PHOENIX-400 APACI',IE =

| L

Phoenix Puts the SQL Back in NoSQL

e Accessing HBase data with Phoenix can be
substantially easier than direct HBase API use

SELECT * FROM foo WHERE bar > 30

Versus

Your Bl tool
probably can’t do
HTable t = new HTable(“foo”); this

RegionScanner s = t.getScanner(new Scan(...,
new ValueFilter(CompareOp.GT,
new CustomTypedComparator(30)), ...));
while ((Result r = s.next()) != null) {
// blah blah blah Java Java Java

J (And we didn’t include error handling...)
s.close();

t.close(); APACHE oenix

Phoenix Puts the SQL Back in NoSQL

* Accessing HBase data with Phoenix can be
substantially faster than direct HBase API use

— Phoenix parallelizes queries based on stats; HBase does
not know how to chunk queries beyond scanning an entire
region

— Phoenix pushes processing to the server - most "by hand”
APl accesses do not use coprocessors

* A huge difference for aggregation queries
— Phoenix supports and uses secondary indexes

— Phoenix uses "every trick in the book" based on various
factors: the HBase version, metadata and query, reverse
scans, small scans, skip scans, etc.

APACHE O€nlxXx

Who Uses Apache Phoenix?

saleforee) INTUIT @ﬁé e
HUAwWe|l Alibaba.com
AR

PRUPNUITN /0)5@5@
Horté:nworks d) Y @t/e' Taobao.com
NG:DATA WTEOCO “ssiftscience

(CertusNet DS 10_ CAPILLARY"

Intelligent Customer Engagement

Q SOC|aIt3Aakkers
And more Ph oenlx

APACHE

Salesforce Phoenix Use Cases

e Entity history
e System of Record

— High scale, secure, non-transactional store for new use
cases

e "Custom Objects" SQL-like public facing APls
— Custom objects are the user’s business objects

— We are adding a new complimentary implementation with
a Phoenix+HBase back end for big data use cases

APACHE O€nlxXx

A Deeper Look

APACHE P oenix

Phoenix + HBase Architecture

Client finds
RegionServer

addresses in
ZooKeeper

Client reads and
writes rows by
directly accessing

the
RegionServers

ZK Quorum

| HMaster |

/
! Master assigns
/ regions and

/

g achieves load

/ balancing

)

APACHE

"We put the SQL back in NoSQL"

Phoenix + HBase Architecture

ZK Quorum

Client finds
RegionServer

addresses in
ZooKeeper 3

Client reads and
writes rows by

| HMaster |

/
! Master assigns
directly accessing ’ regions and

/

the f achieves load
« /
RegionServers / balancing

)

* The Phoenix jar is installed on the HBase RegionServer classpath

azacH IHeloenix

the SQL back in NoSQL"

Phoenix + HBase Architecture

e e
RegionServer
addresses in

Client reads and
writes rows by

| HMaster |

/
/ Master assigns
directly accessing ’ regions and

/

the ” achieves load
RegionServers / balancing

)

* The Phoenix jar is installed on the HBase RegionServer classpath
* The Phoenix JDBC driver is installed on the client

apacHE IHeloenix

¢ SQL back in NoSQL"

‘Phoenix + HBase Architecture

ot i ZK Quorum
ient finds

addresses in
_ ZOOKeeper >

Client reads and
writes rows by

=
K_
/

/ Master assigns

/

directly accessing / regions and
the : achieves load
RegionServers / balancing
‘

* The Phoenix jar is installed on the HBase RegionServer classpath
* The Phoenix JDBC driver is installed on the client

* The application speaks SQL to HBase =

APACHE h ocenix
"We put the SQL ck in NosSQL"

ba

Phoenix Data Model

* Phoenix maps the HBase data model to the relational
world

HBase Table ' '

' Column Family A ' Column Family B ' ' '

| Qualifier 1 | Qualifier2 | Qualifier 3 ' ' '

Row Key 1 ' KeyValue ' ' ' ' '
Row Key 2 ' ' KeyValue ' KeyValue ' ' '
Row Key 3 ' KeyValue \\ ' ' '
’ | | 1 ' '

A | |

Multiple Versions

Remember: “sparse, consistent, distributed, multi-dimensional, sorted map”

APACHE O€nlxXx

Phoenix Data Model

Phoenix table

Phoenix Data Model

Phoenix table

Columns

Phoenix Data Model

Phoenix table

~.

HBase Table '
' Column Family A ' Column Family B ' '
' Qualifier 1 ' Qualifier2 | Qualifier 3 ' ' '
Row Key 1 ' KeyVal ' A ' ' ' '
Row Key 2 ' ' KeyV4lue ' KeyValue ' ' '
Row Tey3 ' : ‘ KeyValue ' : ‘ ' : ' ' =
Primary Key Constraint Columns

APACHE & »

loenix

Data Model - Example

* Consider a table containing metrics data for servers
with a schema like this:

HOST
DATE
RESPONSE_TIME

GC_TIME
CPU_TIME
|I0_TIME

VARCHAR

DATE
INTEGER

INTEGER
INTEGER
INTEGER

:|— Row Key

~

> Columns

APACHE P oenix

Data Model - Example

e The DDL command would look like:

CREATE TABLE SERVER_METRICS (

HOST VARCHAR NOT NULL,
DATE DATE NOT NULL,
RESPONSE TIME INTEGER,
GC_TIME INTEGER,
CPU_TIME INTEGER,
I0_TIME INTEGER,

CONSTRAINT pk PRIMARY KEY (HOST, DATE))

APACHE O€nlxXx

Data Model - Example

e And in the HBase table the data would be laid out

like:

1396743589 1234
SF1 1396743589 8012
SF3 1396002345 2345
SF3 1396002345 2340
SF7 1396552341 5002 1234
“ J\ J
e e
Row Key Columns

Views

 Updatable views

— Views created using only simple equality expressions in
the WHERE clause are updatable

* Read-only Views

— Using more complex WHERE clauses in the view definition
will result in read only views

— Native HBase tables can be mapped with read-only views
 Multi-Tenant Views

— Tenant-specific views may only be created using tenant-
specific connections (more on this later)

APACHE O€nlxXx

Views

Single table only, views over multiple joined tables
are not supported (yet)

Once a view is created the underlying table cannot
be dropped until all views are dropped

Creating indexes over views is supported

Any index data for a view will be deleted if it is
dropped

APACHE O€nlxXx

Mapping Existing HBase Tables

* Phoenix supports read only access to existing HBase
tables
— Create a Phoenix table using CREATE TABLE
— Or create a view using CREATE VIEW
— Use appropriate quoting for mixed case HBase table and
native column names
« NOTE: An empty cell will be inserted for each row in
the native table to enforce primary key constraints
* NOTE: Serialized bytes in the table must match the

expected Phoenix type serializations
— See http://phoenix.apache.org/language/datatypes.html

APACHE O€nlxXx

Dynamic Columns

* Extend schema during query

* A subset of columns may be specified in the CREATE
TABLE DDL while the remainder can be optionally
surfaced at query time

* Especially useful for views mapped over native

HBase tables

CREATE TABLE *t" (
K VARCHAR PRIMARY KEY,

“f1”."col1” VARCHAR);

SELECT * FROM “t” ("f1"."col2” VARCHAR);

/

APACHE O€nlxXx

Multi-Tenancy

Phoenix can provide multi-tenant isolation via a combination of
multi-tenant tables and tenant-specific connections
— Tenant-specific connections only access data that belongs to the tenant
— Tenants can create tenant-specific views and add their own columns

Multi-Tenant Tables
— Declare these using the MULTI_TENANT=true DDL property

Tenant-Specific Connections

— Tenants are identified by the presence or absence of the tenantld
property in the JDBC connection string

— A tenant-specific connection may only query:
* Their own data in multi-tenant tables
» All data in non-multi-tenant (global) tables
* Their own schema (tenant-specific views)

APACHE O€nlxXx

Multi-Tenancy

CREATE TABLE event (
tenant_id VARCHAR, }» First PK column identifies tenant ID
type CHAR(1),
event_id BIGINT,
created date DATE,
created by VARCHAR,
CONSTRAINT pk PRIMARY KEY (tenant_id, type, event_id))
MULTI_TENANT=true;

Tenant-specific connection

A
4 \

DriverManager.connect(“jdbc:phoenix:localhost;tenantId=me”);

APACHE O€nlxXx

Secondary Indexes

DDL provides several index types
Can define covered columns

Guarantees

— On successful return to the client all data has been
persisted to all interested indexes and the primary table

— Updates are first made to the index tables
* Index tables are only ever a single edit ahead of the primary table

Failure handling

— Index updates are added to the WAL of the primary table
and processed as part of log recovery

— Indexes are automatically offlined when the primary table

becomes unavailable, until it comes back

APACHE O€nlxXx

Secondary Indexes

e Mutable indexes

— Global mutable indexes

* Server side intercepts primary table updates, builds the index
updates and sends them to index tables, possibly remote

* For read heavy, low write uses cases

— Local mutable indexes
* Index data and primary data are placed together on same servers

* Higher read time cost than with global indexes (the exact region
location of index data cannot be predetermined)

* For write heavy, space constrained use cases

* Immutable indexes
— Managed entirely by the client (writes scale more)
— Contract is: Once written primary rows are never updated

— For use cases that are write once, append oenix
APACHE

Secondary Indexes

e (Mutable) index update flow

ndexer - Builder - Codec

Region '
Coprocessor
Host

WAL Updater

Region
Coprocessor Indexer Index Table
Host

Courtesy of Jesse Yates from SF Hbase User Group Slides

apacHE IHeloenix

¢ SQL back in NoSQL"

Secondary Indexes

* Creating a global index with covered columns

CREATE TABLE t (k VARCHAR PRIMARY KEY,
v1 VARCHAR, v2 INTEGER);

CREATE INDEX i ON t (v1) INCLUDE (v2);

\ J
Y

Covered column

— Data in covered columns will be copied into the index

— This allows a global index to be used more frequently, as a
global index will only be used if all columns referenced in
the query are contained by it

APACHE O€nlxXx

Joins

e Standard JOIN syntax supported, with limitations

lSELECTi rseIectExpression H
1[/*'+hint"/ ‘,

[FROM tableSpec}l
{JOIN tableSpec ON expression
\[WHERE expression]f LEFT

RICGHT OUTER
1{GROUP BY expre55|on\[HAVING expression]f

ORDER BY order \‘[LIMIT bindParameter
number

apacnz YOS N 1 X

Joins

* JOIN limitations
— FULL OUTER JOIN and CROSS JOIN are not supported
— Only equality (=) is supported in joining conditions
* No restriction on other predicates in the ON clause
* Enhancements in latest releases
— Derived tables are supported as of 4.1

— Sub-joins are supported as of 4.1, currently the join table
can only be a named table

— Semi- and anti-joins (IN and EXISTS subqueries) and
correlated subqueries are supported as of 4.2, only in the
WHERE clause and only with equality (=) constraints

APACHE O€nlxXx

Joins

Only hash join physical plans are available

— One side of the join must be small enough to be broadcast
to all servers and held in memory during query execution

Secondary indexes will be automatically utilized
when running join queries if available

Server-side caches are used to hold the hashed sub-
guery results

— Configuration or query changes will be necessary if you
encounter InsufficientMemoryExceptions

Should be considered a work in progress

APACHE O€nlxXx

Salted Tables

 HBase tables can develop “hot spots” when writing data
with monotonically increasing row keys

— HBase RegionServers serve regions of data, which are ranges of
lexiographically sorted rows

— Region hosting is exclusive, load can fall all onto one server

* Phoenix can “salt” keys into N buckets such that writes
fan out N-ways even with monotonic primary keys

CREATE TABLE T (K VARCHAR PRIMARY KEY, ...)
SALT_BUCKETS=32;

* For best results, N should approximate the number of

RegionServers in the HBase cluster

APACHE O€nlxXx

Query Optimization

Example query plan for a 32 region table

Connected to: Phoenix (version 4.1) =]
Driver: PhoenixEmbeddedDriver (version 4.1)

Autocommit status: true

Transaction isolation: TRANSACTION_READ_COMMITTED

Building list of tables and columns for tab-completion (set fastconnect to true
to skip)...

74/74 (100%) Done

Done

sqlline version 1.1.2

@: jdbc:phoenix:localhost:2181:/hbase> EXPLAIN SELECT COUNT(%x) AS COUNT,GC_TIME
FROM SERVER_METRICS WHERE RESPONSE_TIME > 1000 GROUP BY GC_TIME ORDER BY COUNT D
ESC LIMIT 100;

| PLAN |

| CLIENT PARALLEL 32-WAY FULL SCAN OVER SERVER_METRICS |
| SERVER FILTER BY RESPONSE_TIME > 1000 |

| SERVER AGGREGATE INTO DISTINCT ROWS BY [GC_TIME] |
| CLIENT MERGE SORT |

| CLIENT TOP 100 ROWS SORTED BY [COUNT(1) DESC] |

5 rows selected (0.054 seconds)
@: jdbc:phoenix:localhost:2181:/hbase> I

APACHE P oenix

Query Optimization

With a secondary index on RESPONSE_TIME

@: jdbc:phoenix:localhost:2181:/hbase> CREATE INDEX response_time on server_metr B
ics (RESPONSE_TIME) INCLUDE (GC_TIME);

No rows affected (0.336 seconds)
@: jdbc:phoenix:localhost:2181:/hbase> EXPLAIN SELECT COUNT(%) AS COUNT,GC_TIME

FROM SERVER_METRICS WHERE RESPONSE_TIME > 1000 GROUP BY GC_TIME ORDER BY COUNT D
ESC LIMIT 100;

| CLIENT PARALLEL 32-WAY RANGE SCAN OVER RESPONSE_TIME [1,000] - [*] |
I SERVER AGGREGATE INTO DISTINCT ROWS BY [GC_TIME] |

| CLIENT MERGE SORT |
| CLIENT TOP 100 ROWS SORTED BY [COUNT(1) DESC] |

4 rows selected (0.058 seconds)
@: jdbc:phoenix:localhost:2181:/hbase> I

IFeloenix

APACHE

Query Optimization

* Client side rewriting
— Parallel scanning with final client side merge sort
— RPC batching
— Use secondary indexes if available
— Rewrites for multitenant tables
* Statistics
— Use guideposts to increase intra-region parallelism
e Server side push down
— Filters
— Skip scans
— Partial aggregation
— TopN

— Hash joins '
J APACHE Oenlx

Query Optimization

e Future work considers integrating Apache Calcite
— http://calcite.incubator.apache.org

— Cost based optimization
— ~120 rewrite rules
— Support for materialized views, lattices, tiles, etc.

APACHE i O S 111 X

Statistics

 As of 4.2, Phoenix collects a set of keys per region
per column family that are equidistant by volume of
intervening data

— These keys are called guideposts and they act as hints for
increased parallelization of queries over target regions

— Helps avoid region scanner lease timeouts

* Collected automatically during major compaction
and region splits

APACHE O€nlxXx

Skip Scans

* The optimizer identifies sub-regions of interest in the
key space and chunks parallel scans by region
boundaries (and guideposts if available)

R1

scan, | ooses é """""""""""""""""""""

scan, [? __________________________________
Rs

scan, | — ; ___________________________________
4

APACHE O€nlx

Skip Scans

 Within a region, column value ranges are pushed
down into a filter that uses SEEK_NEXT_ HINT to
quickly skip through data

INCLUDE

INCLUDE

INCLUDE

APACHE O€nlx

Partial Aggregation

* Phoenix runs aggregations in parallel on the server,
where the data lives
— GROUP BY and/or aggregate functions
— Only the aggregate values are returned for each grouping

SF1
SF1
SF1
SF1
SF1
SF1
SF1
SF2
SF2
SF2
SF2
SF2
SF2
SF3
SF3
SF3
SF3
SF3
SF3
SF3
SF3

Jun 2 10:10:10.234
Jun 3 23:05:44.975
Jun 9 08:10:32.147
Jun 9 08:10:32.147
Jun 1 11:18:28.456
Jun 3 22:03:22.142
Jun 3 22:03:22.142
Jun 1 10:29:58.950
Jun 2 14:55:34.104
Jun 3 12:46:19.123
Jun 3 12:46:19.123
Jun 8 08:23:23.456
Jun 1 10:31:10.234
Jun 1 10:31:10.234
Jun 3 10:31:10.234
Jun 8 10:31:10.234
Jun 1 10:31:10.234
Jun 1 10:31:10.234
Jun 8 10:31:10.234
Jun 9 10:31:10.234
Jun 3 10:31:10.234

256
235

234
432
23

314
256

876
234
432

314
256
235
876
234

234

314
256
235

234
432
876
234
432
876
234
432
890
314
256

876
234
432

674
234
341

23
314
256

23
314

235
876
234

235
876
234
432

276

SF1
SF2
SF3

3421
2145
9823

APACHE

IFeloenix

TopN

e Parallel scans are chunked by region boundaries (and
guideposts if available)
 TopN coprocessor holds on to top N rows by chunk

e Client does a final merge sort

scan,

scan,

scan,

APACHE

oenix

Hash Joins

e Separate query into LHS and RHS

e Execute RHS and broadcast the result to all
RegionServers

RHS

Hash Joins

* Execute LHS and join in coprocessor

LHS
RHS
scan,
[| | | | |
scan,
RHS
scan,
[| | | | |
scan,

APACHE
"We put

the SQL back in NoSQL"

Roadmap

* Transactions, probably via Tephra*

* Many-to-many joins

* Cost-based query optimizer
— Enhanced statistics collection, histograms
— Apache Calcite integration

* Query server

— Like Apache Hive’s HiveServer2

— Opens the door to on demand use of available Hive or
Spark server-side resources

OLAP extensions

— WINDOW, PARTITION OVER, RANK, and other SQL-92
extensions

oenix

* _ http://blog.cask.co/2014/07/meet-tephra-an-open-source-transaction-engine-2/ APACHE

Roadmap

Functional indexes
Table sampling
Surface native HBase multiversioning

Security

— GRANT and REVOKE using the HBase AccessController
— Per cell labels and visibility expressions

— Transparent encryption

APACHE O€nlxXx

End

(Questions?)

APACHE P oenix

